Post-hoc gradient-based interpretability methods [Simonyan et al., 2013, Smilkov et al., 2017] that provide instance-specific explanations of model predictions are often based on assumption (A): magnitude of input gradients -- gradients of logits with respect to input -- noisily highlight discriminative task-relevant features. In this work, we test the validity of assumption (A) using a three-pronged approach. First, we develop an evaluation framework, DiffROAR, to test assumption (A) on four image classification benchmarks. Our results suggest that (i) input gradients of standard models (i.e., trained on original data) may grossly violate (A), whereas (ii) input gradients of adversarially robust models satisfy (A). Second, we then introduce BlockMNIST, an MNIST-based semi-real dataset, that by design encodes a priori knowledge of discriminative features. Our analysis on BlockMNIST leverages this information to validate as well as characterize differences between input gradient attributions of standard and robust models. Finally, we theoretically prove that our empirical findings hold on a simplified version of the BlockMNIST dataset. Specifically, we prove that input gradients of standard one-hidden-layer MLPs trained on this dataset do not highlight instance-specific signal coordinates, thus grossly violating assumption (A). Our findings motivate the need to formalize and test common assumptions in interpretability in a falsifiable manner [Leavitt and Morcos, 2020]. Additionally, we believe that the DiffROAR evaluation framework and BlockMNIST-based datasets can serve as sanity checks to audit instance-specific interpretability methods.
翻译:在这项工作中,我们用三管齐下的方法测试假设(A)的有效性。首先,我们开发了一个评估框架(DiffROAR),以测试四个图像分类基准的假设(A)。我们的结果表明(一) 标准模型(即受过原始数据培训的)输入梯度可能严重违背(A),而(二) 对抗性强模型的输入梯度满足(A) 。第二,我们随后引入基于MDMIST的半现实数据集BlockMNIST,该数据集基于MNIST的半现实数据集,通过设计将歧视特征的先前知识编码。我们对BlockMNIST的分析利用了这一信息来验证(A) 四个图像分类基准的假设(A)。我们的结果表明(一) 标准模型输入梯度的输入梯度(即受过原始数据培训的)可能严重违背(A),而(二) 对抗性强势模型的输入梯度满足(A)。 其次,我们随后引入了基于MNIST的半现实数据集成一个标准数据,从而证明我们经过测试的GNI的GRA的GRA的常规数据。