An explicit discriminator trained on observable in-distribution (ID) samples can make high-confidence prediction on out-of-distribution (OOD) samples due to its distributional vulnerability. This is primarily caused by the limited ID samples observable for training discriminators when OOD samples are unavailable. To address this issue, the state-of-the-art methods train the discriminator with OOD samples generated by general assumptions without considering the data and network characteristics. However, different network architectures and training ID datasets may cause diverse vulnerabilities, and the generated OOD samples thus usually misaddress the specific distributional vulnerability of the explicit discriminator. To reveal and patch the distributional vulnerabilities, we propose a novel method of \textit{fine-tuning explicit discriminators by implicit generators} (FIG). According to the Shannon entropy, an explicit discriminator can construct its corresponding implicit generator to generate specific OOD samples without extra training costs. A Langevin Dynamic sampler then draws high-quality OOD samples from the generator to reveal the vulnerability. Finally, a regularizer, constructed according to the design principle of the implicit generator, patches the distributional vulnerability by encouraging those generated OOD samples with high entropy. Our experiments on four networks, four ID datasets and seven OOD datasets demonstrate that FIG achieves state-of-the-art OOD detection performance and maintains a competitive classification capability.


翻译:在可观测分布(ID)样本方面受过培训的明确歧视者可因其分布脆弱性而对分配外(OOD)样本作出高度信任的预测。这主要是由于在OOD样本不存在时,培训歧视者时可观察到的ID样本有限,在培训歧视者时可观察到的ID样本有限。为了解决这个问题,最先进的方法可以将歧视者与一般假设产生的OOD样本培训在一起,而不考虑数据和网络特点。然而,不同的网络架构和培训ID数据集可能会造成多种脆弱性,因此产生的OOD样本通常会错误地处理明确歧视者的具体分布脆弱性。为了揭示和弥补分布上的弱点,我们建议了一种新型的方法,即通过隐含的发电机来培训歧视者培训歧视者(FIG)。根据Shannon entropy,一个明确的歧视者可以构建其相应的隐含的生成OOD样本来生成具体的OD样本而无需额外的培训费用。一个Langevin动态取样员然后从发电机中提取高质量的OD样本来揭示脆弱性。最后,根据隐含的发电机设计原则而建立的常规化器,通过隐含的生成的ODOD 4号检测网络来弥补分配脆弱性,通过鼓励我们生成的ODD 的OD 4号的检测能力,从而展示这些高的ODODGD样品,从而显示我们所生成的4号的磁性能测试。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
40+阅读 · 2021年2月12日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
25+阅读 · 2020年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Adversarial Metric Attack for Person Re-identification
Arxiv
5+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
Top
微信扫码咨询专知VIP会员