Aspect-level sentiment classification (ASC) aims to predict the fine-grained sentiment polarity towards a given aspect mentioned in a review. Despite recent advances in ASC, enabling machines to preciously infer aspect sentiments is still challenging. This paper tackles two challenges in ASC: (1) due to lack of aspect knowledge, aspect representation derived in prior works is inadequate to represent aspect's exact meaning and property information; (2) prior works only capture either local syntactic information or global relational information, thus missing either one of them leads to insufficient syntactic information. To tackle these challenges, we propose a novel ASC model which not only end-to-end embeds and leverages aspect knowledge but also marries the two kinds of syntactic information and lets them compensate for each other. Our model includes three key components: (1) a knowledge-aware gated recurrent memory network recurrently integrates dynamically summarized aspect knowledge; (2) a dual syntax graph network combines both kinds of syntactic information to comprehensively capture sufficient syntactic information; (3) a knowledge integrating gate re-enhances the final representation with further needed aspect knowledge; (4) an aspect-to-context attention mechanism aggregates the aspect-related semantics from all hidden states into the final representation. Experimental results on several benchmark datasets demonstrate the effectiveness of our model, which overpass previous state-of-the-art models by large margins in terms of both Accuracy and Macro-F1.


翻译:视觉感官分类(ASC)旨在预测对审查中提到的某一方面有细微感知的情绪极极极性。尽管ASC最近有所进步,但使机器能够粗略地推断情绪仍具有挑战性。本文件应对了ASC的两种挑战:(1) 由于缺乏方方面知识,先前工作中得出的方面代表不足以代表方的准确含义和财产信息;(2) 先前的工作只捕捉当地综合信息或全球关系信息,因此其中之一导致缺乏一种综合信息,从而导致没有充分的合成信息。为应对这些挑战,我们提议了一个新的ASC模型,不仅使机器能够使机器能够精细地推断情感,而且能够结合两种合成信息,并让它们相互补偿。我们的模式包括三个关键组成部分:(1) 知识认知的封闭性重复记忆网络经常将动态总结的方面知识整合在一起;(2) 双重合成图表网络将各种综合信息结合起来,从而全面收集足够的合成信息。1 为了应对这些挑战,我们提出了一个新的ASC模型的门式再加点,不仅包含端到端端端端-端-端-内嵌方面的知识,而且还将两者合取两种核心-实验性代表性方面,从而进一步展示我们最后的模型-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导为先导、先导、先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导、后导-先导-先导-先导论-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-先导-制-制-先演制-先导-导-制-导-导-导-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
41+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员