A new class of copulas, termed the MGL copula class, is introduced. The new copula originates from extracting the dependence function of the multivariate generalized log-Moyal-gamma distribution whose marginals follow the univariate generalized log-Moyal-gamma (GLMGA) distribution as introduced in \citet{li2019jan}. The MGL copula can capture nonelliptical, exchangeable, and asymmetric dependencies among marginal coordinates and provides a simple formulation for regression applications. We discuss the probabilistic characteristics of MGL copula and obtain the corresponding extreme-value copula, named the MGL-EV copula. While the survival MGL copula can be also regarded as a special case of the MGB2 copula from \citet{yang2011generalized}, we show that the proposed model is effective in regression modelling of dependence structures. Next to a simulation study, we propose two applications illustrating the usefulness of the proposed model. This method is also implemented in a user-friendly R package: \texttt{rMGLReg}.


翻译:引入了称为 MGL 千叶类的新的千叶类。 新的千叶类源自于提取多变通用日志- 摩亚- 伽玛分布的依附功能, 多变通用日志- 摩亚- 伽玛分布的边际沿著\ citet{ li2019jan} 引入的单象- 摩亚- 伽玛( GLMGAA) 分布。 MGL 的千叶类可捕捉到边缘坐标之间的非异性、 可交换性和不对称依赖性, 并为回归应用提供了简单的配方。 我们讨论的是 MGL 焦拉 的概率性特征, 并获得了相应的极端值千叶色。 虽然从\ citet{ yang2011 genalized} 引入的 MGB2 杂叶类分布的边际分布也可以被视为一个特殊案例。 我们显示, 拟议的模型对于依赖结构的回归模型是有效的。 在模拟研究之后, 我们提出两个应用程序, 说明拟议模型的有用性。 这个方法还在一个用户友好的 R 包中应用 :\ textttrMGLAGLGQ} 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2020年12月18日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【强化学习炼金术】李飞飞高徒带你一文读懂RL来龙去脉
黑龙江大学自然语言处理实验室
3+阅读 · 2018年1月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年10月8日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【强化学习炼金术】李飞飞高徒带你一文读懂RL来龙去脉
黑龙江大学自然语言处理实验室
3+阅读 · 2018年1月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员