A popular recent approach to answering open-domain questions is to first search for question-related passages and then apply reading comprehension models to extract answers. Existing methods usually extract answers from single passages independently. But some questions require a combination of evidence from across different sources to answer correctly. In this paper, we propose two models which make use of multiple passages to generate their answers. Both use an answer-reranking approach which reorders the answer candidates generated by an existing state-of-the-art QA model. We propose two methods, namely, strength-based re-ranking and coverage-based re-ranking, to make use of the aggregated evidence from different passages to better determine the answer. Our models have achieved state-of-the-art results on three public open-domain QA datasets: Quasar-T, SearchQA and the open-domain version of TriviaQA, with about 8 percentage points of improvement over the former two datasets.


翻译:回答开放领域问题的最新流行方法是首先寻找与问题有关的段落,然后运用阅读理解模型来获取答案。现有方法通常独立地从单个段落中提取答案。但有些问题需要从不同来源收集各种证据才能正确回答。在本文件中,我们提出了两种模式,利用多个段落来生成答案。两者都采用对回答进行重新排序的方法,对现有最新QA模型生成的回答候选人进行重新排序。我们提出了两种方法,即基于实力的重新排序和基于覆盖面的重新排序,以利用不同段落的汇总证据更好地确定答案。我们的模型在三个公开开放领域QA数据集(Quasar-T、SearchQA和TriviaQA开放域版本)上取得了最新的结果,前两个数据集的改进率约为8个百分点。

8
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
基于Wikipedia知识源的开放领域问答系统(读书报告)
科技创新与创业
9+阅读 · 2017年11月7日
Arxiv
3+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年3月16日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员