Logistic regression is one of the most fundamental methods for modeling the probability of a binary outcome based on a collection of covariates. However, the classical formulation of logistic regression relies on the independent sampling assumption, which is often violated when the outcomes interact through an underlying network structure. This necessitates the development of models that can simultaneously handle both the network peer-effect (arising from neighborhood interactions) and the effect of high-dimensional covariates. In this paper, we develop a framework for incorporating such dependencies in a high-dimensional logistic regression model by introducing a quadratic interaction term, as in the Ising model, designed to capture pairwise interactions from the underlying network. The resulting model can also be viewed as an Ising model, where the node-dependent external fields linearly encode the high-dimensional covariates. We propose a penalized maximum pseudo-likelihood method for estimating the network peer-effect and the effect of the covariates, which, in addition to handling the high-dimensionality of the parameters, conveniently avoids the computational intractability of the maximum likelihood approach. Consequently, our method is computationally efficient and, under various standard regularity conditions, our estimate attains the classical high-dimensional rate of consistency. In particular, our results imply that even under network dependence it is possible to consistently estimate the model parameters at the same rate as in classical logistic regression, when the true parameter is sparse and the underlying network is not too dense. As a consequence of the general results, we derive the rates of consistency of our estimator for various natural graph ensembles, such as bounded degree graphs, sparse Erd\H{o}s-R\'{e}nyi random graphs, and stochastic block models.


翻译:物流回归是基于共变的集合来模拟二进制结果概率的最根本方法 { 。 然而, 典型的物流回归模型依赖于独立的抽样假设, 当结果通过一个基本的网络结构相互作用时, 通常会违反这种假设。 这就需要开发模型, 既能同时处理网络同级效应( 由邻里互动产生), 也能同时处理高维共变效应的影响。 在本文中, 我们开发了一个框架, 将这种依赖性纳入一个高维化的后勤回归模型中, 采用四进制的正态互动术语, 如Ising模型, 旨在捕捉取基础网络的对齐互动。 因此, 由此形成的模型也可以被视为一个Ising模型, 其依赖的外部字段将线性编码高维的对高维变异。 我们提出了一种惩罚性的最大假象方法, 用于评估网络同一种高维度的参数, 方便地避免计算最大可能性的方法。 因此, 我们的正态网络的直流化模型, 在各种标准的常态模型下, 当我们测测测测测测测测测测的轨道时, 我们的正态的正态的精确的精确的精确率是 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Arxiv
0+阅读 · 2021年11月29日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Top
微信扫码咨询专知VIP会员