Motivated by the case fatality rate (CFR) of COVID-19, in this paper, we develop a fully parametric quantile regression model based on the generalized three-parameter beta (GB3) distribution. Beta regression models are primarily used to model rates and proportions. However, these models are usually specified in terms of a conditional mean. Therefore, they may be inadequate if the observed response variable follows an asymmetrical distribution, such as CFR data. In addition, beta regression models do not consider the effect of the covariates across the spectrum of the dependent variable, which is possible through the conditional quantile approach. In order to introduce the proposed GB3 regression model, we first reparameterize the GB3 distribution by inserting a quantile parameter and then we develop the new proposed quantile model. We also propose a simple interpretation of the predictor-response relationship in terms of percentage increases/decreases of the quantile. A Monte Carlo study is carried out for evaluating the performance of the maximum likelihood estimates and the choice of the link functions. Finally, a real COVID-19 dataset from Chile is analyzed and discussed to illustrate the proposed approach.
翻译:根据COVID-19的病例死亡率(CFR),本文件中我们根据通用的三参数贝塔(GB3)分布法,开发了完全参数四分位回归模型。Beta回归模型主要用于模型率和比例。然而,这些模型通常是用一个有条件的平均值来说明的。因此,如果观察到的反应变量按照CFR数据等对称分布法进行,则这些模型可能不够充分。此外,贝塔回归模型不考虑依赖变量各行各业的共差效应,而这种效应是通过有条件的量化方法实现的。为了引入拟议的GB3回归模型,我们首先通过插入一个四分参数对GB3分布进行重新量化,然后我们开发新的拟议四分模型。我们还提议对预测或反应关系进行简单的解释,说明四分位数的百分数增加/减少。一个蒙特卡洛研究是用来评价最大可能性估计的绩效和链接功能的选择的。最后,分析和讨论智利的一个真实的COVID-19数据集,以说明拟议的方法。