Motivated by the case fatality rate (CFR) of COVID-19, in this paper, we develop a fully parametric quantile regression model based on the generalized three-parameter beta (GB3) distribution. Beta regression models are primarily used to model rates and proportions. However, these models are usually specified in terms of a conditional mean. Therefore, they may be inadequate if the observed response variable follows an asymmetrical distribution, such as CFR data. In addition, beta regression models do not consider the effect of the covariates across the spectrum of the dependent variable, which is possible through the conditional quantile approach. In order to introduce the proposed GB3 regression model, we first reparameterize the GB3 distribution by inserting a quantile parameter and then we develop the new proposed quantile model. We also propose a simple interpretation of the predictor-response relationship in terms of percentage increases/decreases of the quantile. A Monte Carlo study is carried out for evaluating the performance of the maximum likelihood estimates and the choice of the link functions. Finally, a real COVID-19 dataset from Chile is analyzed and discussed to illustrate the proposed approach.


翻译:根据COVID-19的病例死亡率(CFR),本文件中我们根据通用的三参数贝塔(GB3)分布法,开发了完全参数四分位回归模型。Beta回归模型主要用于模型率和比例。然而,这些模型通常是用一个有条件的平均值来说明的。因此,如果观察到的反应变量按照CFR数据等对称分布法进行,则这些模型可能不够充分。此外,贝塔回归模型不考虑依赖变量各行各业的共差效应,而这种效应是通过有条件的量化方法实现的。为了引入拟议的GB3回归模型,我们首先通过插入一个四分参数对GB3分布进行重新量化,然后我们开发新的拟议四分模型。我们还提议对预测或反应关系进行简单的解释,说明四分位数的百分数增加/减少。一个蒙特卡洛研究是用来评价最大可能性估计的绩效和链接功能的选择的。最后,分析和讨论智利的一个真实的COVID-19数据集,以说明拟议的方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
33+阅读 · 2021年7月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
4+阅读 · 2020年1月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
6+阅读 · 2020年9月29日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2017年12月1日
Arxiv
3+阅读 · 2017年7月6日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
4+阅读 · 2020年1月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员