One of the most basic, longstanding open problems in the theory of dynamical systems is whether reachability is decidable for one-dimensional piecewise affine maps with two intervals. In this paper we prove that for injective maps, it is decidable. We also study various related problems, in each case either establishing decidability, or showing that they are closely connected to Diophantine properties of certain transcendental numbers, analogous to the positivity problem for linear recurrence sequences. Lastly, we consider topological properties of orbits of one-dimensional piecewise affine maps, not necessarily with two intervals, and negatively answer a question of Bournez, Kurganskyy, and Potapov, about the set of orbits in expanding maps.
翻译:可分射多值仿射映射中的可达性
翻译后的摘要:
在动力系统理论中,最基本和历史悠久的一个未解决问题是,对于两个区间的一维可分射多值仿射映射,可达性是否可判定。本文证明了对于可分射多值仿射映射,如果其是单射的,则其可达性是可判定的。我们还研究了各种相关问题,在每一种情况下要么证明了其可判定性,要么表明它们与某些超越数的丢番图性质密切相关,类似于线性递归序列的正性问题。最后,我们考虑了在一维不一定具有两个区间的可分射多值仿射映射中的轨道的拓扑性质,并否定了Bournez,Kurganskyy和Potapov关于扩张映射轨道集的问题。