Semi-supervised object detection (SSOD) has achieved substantial progress in recent years. However, it is observed that the performances of self-labeling SSOD methods remain limited. Based on our experimental analysis, we reveal that the reason behind such phenomenon lies in the mutual error amplification between the pseudo labels and the trained detector. In this study, we propose a Cross Teaching (CT) method, aiming to mitigate the mutual error amplification by introducing a rectification mechanism of pseudo labels. CT simultaneously trains multiple detectors with an identical structure but different parameter initialization. In contrast to existing mutual teaching methods that directly treat predictions from other detectors as pseudo labels, we propose the Label Rectification Module (LRM), where the bounding boxes predicted by one detector are rectified by using the corresponding boxes predicted by all other detectors with higher confidence scores. In this way, CT can enhance the pseudo label quality compared with self-labeling and existing mutual teaching methods, and reasonably mitigate the mutual error amplification. Over two popular detector structures, i.e., SSD300 and Faster-RCNN-FPN, the proposed CT method obtains consistent improvements and outperforms the state-of-the-art SSOD methods by 2.2% absolute mAP improvements on the Pascal VOC and MS-COCO benchmarks. The code is available at github.com/machengcheng2016/CrossTeaching-SSOD.


翻译:近些年来,半监督天体探测(裁军特别联大)取得了实质性进展。然而,据观察,自标签裁军特别联大方法的性能仍然有限。根据我们的实验分析,我们发现,这种现象背后的原因在于假标签和受过训练的探测器之间的相互错误放大。在本研究中,我们提议了一个交叉教学(CT)方法,目的是通过引入一个假标签校正机制来减少相互错误的放大。CT同时培训多个探测器,其结构相同,但参数初始化也不同。与直接将其他探测器的预测作为假标签处理的现有相互教学方法不同,我们建议采用Label校正模块(LRM),在这个模块中,一个探测器预测的捆绑盒通过使用所有其他探测器所预测的具有更高信任分数的相应盒子加以纠正。通过这种方式,CT可以提高假标签质量,与自标签和现有的相互教学方法相比,并合理地减轻相互错误的放大。在两个流行的检测结构上,即SD300和更快的RC-FPNN,N,N;拟议的MAS-AS-AS-22的绝对的MS-BMA方法在V-BS-C-BSAR_BAR_BAR_MS-MS-BAR_BAR_BAR_BAR_

0
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员