Semi-supervised object detection (SSOD) has achieved substantial progress in recent years. However, it is observed that the performances of self-labeling SSOD methods remain limited. Based on our experimental analysis, we reveal that the reason behind such phenomenon lies in the mutual error amplification between the pseudo labels and the trained detector. In this study, we propose a Cross Teaching (CT) method, aiming to mitigate the mutual error amplification by introducing a rectification mechanism of pseudo labels. CT simultaneously trains multiple detectors with an identical structure but different parameter initialization. In contrast to existing mutual teaching methods that directly treat predictions from other detectors as pseudo labels, we propose the Label Rectification Module (LRM), where the bounding boxes predicted by one detector are rectified by using the corresponding boxes predicted by all other detectors with higher confidence scores. In this way, CT can enhance the pseudo label quality compared with self-labeling and existing mutual teaching methods, and reasonably mitigate the mutual error amplification. Over two popular detector structures, i.e., SSD300 and Faster-RCNN-FPN, the proposed CT method obtains consistent improvements and outperforms the state-of-the-art SSOD methods by 2.2% absolute mAP improvements on the Pascal VOC and MS-COCO benchmarks. The code is available at github.com/machengcheng2016/CrossTeaching-SSOD.
翻译:近些年来,半监督天体探测(裁军特别联大)取得了实质性进展。然而,据观察,自标签裁军特别联大方法的性能仍然有限。根据我们的实验分析,我们发现,这种现象背后的原因在于假标签和受过训练的探测器之间的相互错误放大。在本研究中,我们提议了一个交叉教学(CT)方法,目的是通过引入一个假标签校正机制来减少相互错误的放大。CT同时培训多个探测器,其结构相同,但参数初始化也不同。与直接将其他探测器的预测作为假标签处理的现有相互教学方法不同,我们建议采用Label校正模块(LRM),在这个模块中,一个探测器预测的捆绑盒通过使用所有其他探测器所预测的具有更高信任分数的相应盒子加以纠正。通过这种方式,CT可以提高假标签质量,与自标签和现有的相互教学方法相比,并合理地减轻相互错误的放大。在两个流行的检测结构上,即SD300和更快的RC-FPNN,N,N;拟议的MAS-AS-AS-22的绝对的MS-BMA方法在V-BS-C-BSAR_BAR_BAR_MS-MS-BAR_BAR_BAR_BAR_