An efficient solution to semantic segmentation of large-scale indoor scene point clouds is proposed in this work. It is named GSIP (Green Segmentation of Indoor Point clouds) and its performance is evaluated on a representative large-scale benchmark -- the Stanford 3D Indoor Segmentation (S3DIS) dataset. GSIP has two novel components: 1) a room-style data pre-processing method that selects a proper subset of points for further processing, and 2) a new feature extractor which is extended from PointHop. For the former, sampled points of each room form an input unit. For the latter, the weaknesses of PointHop's feature extraction when extending it to large-scale point clouds are identified and fixed with a simpler processing pipeline. As compared with PointNet, which is a pioneering deep-learning-based solution, GSIP is green since it has significantly lower computational complexity and a much smaller model size. Furthermore, experiments show that GSIP outperforms PointNet in segmentation performance for the S3DIS dataset.


翻译:在这项工作中,提出了大规模室内场点云的语义分割的有效解决办法,称为GSIP(室内点云的绿色分割),其性能按照具有代表性的大型基准 -- -- 斯坦福 3D室内分割(S3DDIS)数据集(S3DIS))来评价。GSIP有两个新的组成部分:1) 一种室式数据预处理方法,选择一个适当的分数,供进一步处理;2) 一种从PointHop扩展的新地物提取器。对于前者,每个房间的抽样点组成一个输入器。对于后者,发现点Hop在将特征提取扩大到大型点云时的弱点,并用较简单的处理管道加以固定。与PointNet相比,GIIP是一个开拓性的深层次的解决方案,因为它的计算复杂性要低得多,模型规模要小得多。此外,实验表明,在S3DIS数据集的分解性能中,GIP在点网络上优于点网络。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员