Few-shot learning is a challenging task since only few instances are given for recognizing an unseen class. One way to alleviate this problem is to acquire a strong inductive bias via meta-learning on similar tasks. In this paper, we show that such inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes. Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations by maximizing the similarity of an image to its discriminative part. To mitigate the overfitting in few-shot classification caused by data scarcity, we further propose a part augmentation strategy by retrieving extra images from a base dataset. We conduct systematic studies on miniImageNet and tieredImageNet benchmarks. Remarkably, our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24% under 5-way 1-shot and 5-way 5-shot settings, which are comparable with state-of-the-art supervised methods.
翻译:少见的学习是一项具有挑战性的任务,因为只给出了很少的承认不可见阶级的例子。 缓解这一问题的方法之一是通过在类似任务上进行元化学习来获得强烈的感化偏差。 在本文中,我们显示,这种感化偏差可以从一个平坦的无标签图像库中学习,并即刻在可见和看不见的阶级中作为可转移的表示方式。 具体地说,我们提议了一个新型的基于部分的自我监督的代言学习计划,以学习可转移的表示方式,使图像与其歧视部分的相似性最大化。 为了减轻因数据稀缺而导致的微小分类的过度配置,我们进一步提议了一项部分增强战略,从一个基本数据集中检索额外的图像。 我们对微型图像网和分层图像网的基准进行了系统的研究。 值得注意的是,我们的方法取得了令人印象深刻的结果,比以往最不受监督的方法高出7.74 %和9.24 %,低于5个方向的1镜头和5分5分5分5分5分的情景。