This work successfully generates uncertainty aware surrogate models, via the Bayesian neural network with noise contrastive prior (BNN-NCP) technique, of the EuroPED plasma pedestal model using data from the JET-ILW pedestal database and subsequent model evaluations. All this conform EuroPED-NN. The BNN-NCP technique is proven to be a good fit for uncertainty aware surrogate models, matching the output results as a regular neural network, providing prediction's confidence as uncertainties, and highlighting the out of distribution (OOD) regions using surrogate model uncertainties. This provides critical insights into model robustness and reliability. EuroPED-NN has been physically validated, first, analyzing electron density $n_e\!\left(\psi_{\text{pol}}=0.94\right)$ with respect to increasing plasma current, $I_p$, and second, validating the $\Delta-\beta_{p,ped}$ relation associated with the EuroPED model. Affirming the robustness of the underlying physics learned by the surrogate model.
翻译:暂无翻译