We give a fast algorithm to optimally compose privacy guarantees of differentially private (DP) algorithms to arbitrary accuracy. Our method is based on the notion of privacy loss random variables to quantify the privacy loss of DP algorithms. The running time and memory needed for our algorithm to approximate the privacy curve of a DP algorithm composed with itself $k$ times is $\tilde{O}(\sqrt{k})$. This improves over the best prior method by Koskela et al. (2020) which requires $\tilde{\Omega}(k^{1.5})$ running time. We demonstrate the utility of our algorithm by accurately computing the privacy loss of DP-SGD algorithm of Abadi et al. (2016) and showing that our algorithm speeds up the privacy computations by a few orders of magnitude compared to prior work, while maintaining similar accuracy.


翻译:我们给出了一种快速算法, 以最佳的方式将隐私保障分为不同的私人(DP)算法, 从而达到任意的准确性。 我们的方法基于隐私损失随机变量的概念, 以量化DP算法的隐私损失。 我们的算法需要运行的时间和记忆来接近由自己构成的 $k$ 的 DP 算法的隐私曲线 $\ tilde{O} (\\ sqrt{k}}) 。 这比Koskela et al. (202020) 之前的最佳方法有所改进, 前者需要$\ tilde_ Omega} (k ⁇ 1.5}) 运行时间。 我们通过精确计算 Abadi 等人 (2016) 的 DP- SGD 算法的隐私损失来展示我们的算法的效用, 并显示我们的算法比先前的工作加快了几级的隐私计算速度, 同时保持类似的精确性 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
51+阅读 · 2020年12月14日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Pure Differential Privacy from Secure Intermediaries
Arxiv
0+阅读 · 2021年12月27日
Privacy-Preserving News Recommendation Model Learning
Arxiv
6+阅读 · 2018年10月3日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员