Deep neural network-based classifiers trained with the categorical cross-entropy (CCE) loss are sensitive to label noise in the training data. One common type of method that can mitigate the impact of label noise can be viewed as supervised robust methods; one can simply replace the CCE loss with a loss that is robust to label noise, or re-weight training samples and down-weight those with higher loss values. Recently, another type of method using semi-supervised learning (SSL) has been proposed, which augments these supervised robust methods to exploit (possibly) noisy samples more effectively. Although supervised robust methods perform well across different data types, they have been shown to be inferior to the SSL methods on image classification tasks under label noise. Therefore, it remains to be seen that whether these supervised robust methods can also perform well if they can utilize the unlabeled samples more effectively. In this paper, we show that by initializing supervised robust methods using representations learned through contrastive learning leads to significantly improved performance under label noise. Surprisingly, even the simplest method (training a classifier with the CCE loss) can outperform the state-of-the-art SSL method by more than 50\% under high label noise when initialized with contrastive learning. Our implementation will be publicly available at {\url{https://github.com/arghosh/noisy_label_pretrain}}.


翻译:接受过全截截截截截截截截片(CCE)损失训练的深神经网络分类器对培训数据中的标签噪音敏感。一种常见的方法可以减轻标签噪音的影响,这种方法可以被视为一种受监督的稳健方法;可以简单地用一种对噪音贴标签的稳健方法取代CCE损失,或重量培训样本和损失值较高的低重量分类。最近,提出了另一种使用半监督学习(SSL)的方法,这加强了这些受监督的可靠方法,以便更有效地利用(可能情况下的)噪音样品。尽管受监督的稳健方法在不同数据类型中运作良好,但已经证明它们比在标签噪音下进行图像分类的SSL方法要差。因此,人们仍然可以看到,如果这些受监督的稳健方法能够更有效地使用未标定的样本,那么这些受监督的稳健方法能否很好地发挥作用。我们通过对比学习的对比性学习方法,在标签噪音下,即使最简单的方法(在CEE损失下训练一个归分分的分类者),在最初的SLOAR_Q_Qromas)下,也可以以比我们现有的高标签/Salbilal-rusmusmal-roma_stromaxxxx。在初始学习了我们现有的标准。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
专知会员服务
41+阅读 · 2021年1月9日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
【AAAI2021】对比聚类,Contrastive Clustering
专知
25+阅读 · 2021年1月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
7+阅读 · 2020年10月9日
VIP会员
相关资讯
【AAAI2021】对比聚类,Contrastive Clustering
专知
25+阅读 · 2021年1月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员