In this paper, we propose a load balancing algorithm based on Reinforcement Learning (RL) to optimize the performance of Fog Computing for real-time IoT applications. The algorithm aims to minimize the waiting delay of IoT workloads in dynamic environments with unpredictable traffic demands, using intelligent workload distribution. Unlike previous studies, our solution does not require load and resource information from Fog nodes to preserve the privacy of service providers, who may wish to hide such information to prevent competitors from calculating better pricing strategies. The proposed algorithm is evaluated on a Discrete-event Simulator (DES) to mimic practical deployment in real environments, and its generalization ability is tested on simulations longer than what it was trained on. Our results show that our proposed approach outperforms baseline load balancing methods under different workload generation rates, while ensuring the privacy of Fog service providers. Furthermore, the environment representation we proposed for the RL agent demonstrates better performance compared to the commonly used representations for RL solutions in the literature, which compromise privacy.
翻译:在本文中,我们提出基于强化学习(RL)的负载平衡算法,以优化雾计算器在实时 IoT 应用程序方面的性能。算法旨在利用智能工作量分配,在交通需求不可预测的动态环境中,利用智能工作量分配,最大限度地减少IoT工作量的等待延迟。与以往的研究不同,我们的解决办法并不要求从雾节点获得负荷和资源信息,以维护服务提供者的隐私,他们可能希望隐藏这些信息,以防止竞争者计算更好的定价战略。提议的算法用分辨事件模拟器(DES)来评价真实环境中的实际部署,其一般化能力在模拟中测试的时间比培训的时间长。我们的结果显示,我们拟议的方法在不同的工作量生成率下超过了基线负荷平衡方法,同时确保Fog服务供应商的隐私。此外,我们为RL代理商提议的环境代表比文献中常用的RL解决方案表述方式表现得更好,后者损害了隐私。</s>