Structural flexibility and/or dynamic interactions with other molecules is a critical aspect of protein function. CryoEM provides direct visualization of individual macromolecules sampling different conformational and compositional states. While numerous methods are available for computational classification of discrete states, characterization of continuous conformational changes or large numbers of discrete state without human supervision remains challenging. Here we present e2gmm, a machine learning algorithm to determine a conformational landscape for proteins or complexes using a 3-D Gaussian mixture model mapped onto 2-D particle images in known orientations. Using a deep neural network architecture, e2gmm can automatically resolve the structural heterogeneity within the protein complex and map particles onto a small latent space describing conformational and compositional changes. This system presents a more intuitive and flexible representation than other manifold methods currently in use. We demonstrate this method on both simulated data as well as three biological systems, to explore compositional and conformational changes at a range of scales. The software is distributed as part of EMAN2.
翻译:与其它分子的结构灵活性和/或动态互动是蛋白质功能的一个关键方面。 CryoEM 提供单个大型分子直接直观的视觉化,对不同相容状态和构成状态进行抽样抽样。虽然可以采用多种方法对离散状态进行计算分类,但连续相容变化或大量离散状态的定性仍具有挑战性。这里我们提供了e2gmm,一种机器学习算法,用3D高斯混合模型确定蛋白或复合体的相容景观,该算法以已知方向的2-D粒子图像绘制。使用深神经网络结构,e2gmm可以自动解决蛋白综合体中的结构异性,并将颗粒映射到描述相容变化和构成变化的小型潜在空间。这个系统比目前使用的其他多种方法都更直观和灵活。我们在模拟数据以及三个生物系统上展示了这种方法,以在一系列尺度上探索成形和相容变化。软件作为EMAN2的一部分分发。