Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, with around 50 million patients worldwide. Accessible and non-invasive methods of diagnosing and characterising AD are therefore urgently required. Electroencephalography (EEG) fulfils these criteria and is often used when studying AD. Several features derived from EEG were shown to predict AD with high accuracy, e.g. signal complexity and synchronisation. However, the dynamics of how the brain transitions between stable states have not been properly studied in the case of AD and EEG data. Energy landscape analysis is a method that can be used to quantify these dynamics. This work presents the first application of this method to both AD and EEG. Energy landscape assigns energy value to each possible state, i.e. pattern of activations across brain regions. The energy is inversely proportional to the probability of occurrence. By studying the features of energy landscapes of 20 AD patients and 20 healthy age-matched counterparts, significant differences were found. The dynamics of AD patients' brain networks were shown to be more constrained - with more local minima, less variation in basin size, and smaller basins. We show that energy landscapes can predict AD with high accuracy, performing significantly better than baseline models.


翻译:阿尔茨海默氏性阿尔茨海默氏病(AD)是最常见的神经退化疾病之一,全世界约有5 000万病人。因此,迫切需要使用无障碍和非侵入性的方法来诊断和定性AD。电脑物理学(EEG)符合这些标准,在研究AD时经常使用。从EEG得出的一些特征显示,AD的预测具有很高的准确性,例如信号复杂性和同步性。然而,在AD和EEEG数据方面,没有适当研究稳定国家之间的大脑转变动态。能源景观分析是用来量化这些动态的一种方法。这项工作为AD和EEG提供了这种方法的首次应用。能源景观将能源价值分配给每一个可能的州,即各个脑区域的活动模式。能量与发生频率的概率成反比反比。通过研究20个AD病人和20个健康年龄相配对的同体的能源景观特征,发现了显著的差异。AD脑网络的动态显示,受限制程度更强,其地方迷你,比EDB的精确度更小的模型更小。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【2020新书】金融机器学习和数据科学,400页pdf
专知会员服务
291+阅读 · 2020年12月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年7月31日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
10+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年7月31日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员