The performance of modern object detectors drops when the test distribution differs from the training one. Most of the methods that address this focus on object appearance changes caused by, e.g., different illumination conditions, or gaps between synthetic and real images. Here, by contrast, we tackle geometric shifts emerging from variations in the image capture process, or due to the constraints of the environment causing differences in the apparent geometry of the content itself. We introduce a self-training approach that learns a set of geometric transformations to minimize these shifts without leveraging any labeled data in the new domain, nor any information about the cameras. We evaluate our method on two different shifts, i.e., a camera's field of view (FoV) change and a viewpoint change. Our results evidence that learning geometric transformations helps detectors to perform better in the target domains.
翻译:当测试分布不同于培训分布时,现代天体探测器的性能会下降。 解决这一焦点的方法大多是不同照明条件或合成图像与真实图像之间的差距造成的物体外观变化。 与此形成对照的是, 我们处理图像捕捉过程的变化所产生的几何变化, 或环境的限制导致内容本身表面几何差异。 我们引入了自我培训方法, 学习一套几何变换, 以尽量减少这些变换, 而不利用新域中任何标签数据, 或任何关于相机的信息。 我们评估了两种变换的方法, 即相机的视野( FoV) 变化和观点变化。 我们的结果表明, 学习几何变有助于探测器在目标区域更好地运行。