In this paper we extend analysis of the WaveHoltz iteration -- a time-domain iterative method for the solution of the Helmholtz equation. We expand the previous analysis of energy conserving problems and prove convergence of the WaveHoltz iteration for problems with impedance boundary conditions in a single spatial dimension. We then consider interior Dirichlet/Neumann problems with damping in any spatial dimension, and show that for a sufficient level of damping the WaveHoltz iteration converges in a number of iteration independent of the frequency. Finally, we present a discrete analysis of the WaveHoltz iteration for a family of higher order time-stepping schemes. We show that the fixed-point of the discrete WaveHoltz iteration converges to the discrete Helmholtz solution with the order of the time-stepper chosen. We present numerical examples and demonstrate that it is possible to completely remove time discretization error from the WaveHoltz solution through careful analysis of the discrete iteration together with updated quadrature formulas.
翻译:在本文中,我们扩展了对WaveHoltz 迭代法的分析,这是解决Helmholtz等式的一种时空迭代法。我们扩展了以前对节能问题的分析,并证明WaveHoltz 迭代法在一个单一空间层面对阻力边界条件问题进行了趋同。然后我们考虑Drichlet/Neumann 内地在任何空间层面的阻塞问题,并表明,对于足够程度的波荷尔茨 迭代法,波荷尔茨 迭代法在不受频率影响的多个迭代法中会汇合在一起。最后,我们提出了对波荷尔茨 的循环法的离散分析,以形成更高级的定序时间步骤。我们表明,离散的波荷尔兹 迭代法的固定点与所选择的时间步骤的顺序汇合在一起。我们列举了数字例子,并表明,通过仔细分析离散的电流和经更新的四边形公式,可以完全消除波荷尔茨溶误差。