With various face presentation attacks emerging continually, face anti-spoofing (FAS) approaches based on domain generalization (DG) have drawn growing attention. Existing DG-based FAS approaches always capture the domain-invariant features for generalizing on the various unseen domains. However, they neglect individual source domains' discriminative characteristics and diverse domain-specific information of the unseen domains, and the trained model is not sufficient to be adapted to various unseen domains. To address this issue, we propose an Adaptive Mixture of Experts Learning (AMEL) framework, which exploits the domain-specific information to adaptively establish the link among the seen source domains and unseen target domains to further improve the generalization. Concretely, Domain-Specific Experts (DSE) are designed to investigate discriminative and unique domain-specific features as a complement to common domain-invariant features. Moreover, Dynamic Expert Aggregation (DEA) is proposed to adaptively aggregate the complementary information of each source expert based on the domain relevance to the unseen target domain. And combined with meta-learning, these modules work collaboratively to adaptively aggregate meaningful domain-specific information for the various unseen target domains. Extensive experiments and visualizations demonstrate the effectiveness of our method against the state-of-the-art competitors.


翻译:由于不断出现各种面貌攻击,基于领域通用(DG)的反排版(FAS)方法日益引起人们的注意。基于DG的现有FAS方法总是捕捉到对各种无形领域进行一般化的域内差异性特征。然而,它们忽视了单个源域的歧视性特征和不同领域特定信息,而经过培训的模式不足以适应各种无形领域。为了解决这一问题,我们提议建立一个适应性的专家学习混合框架(AMEL),利用特定领域的信息在可见源域和无形目标域之间建立适应性联系,以进一步改进一般化。具体地说,主要特定专家(DSE)旨在调查个别源域的歧视性和独特的特定领域特征,作为对共同域内差异性特征的补充。此外,建议动态专家聚合(DEA)以适应性的方式汇总每个来源专家基于与无形目标域有关的领域的补充信息。与元学习相结合,这些模块合作开展工作,以适应性地建立可见源域域域和无形目标域域内我们视觉目标域域域内重要性总体域试验。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员