Given a graph $G(V,E)$, a vertex subset $S$ of $G$ is called an open packing in $G$ if no pair of distinct vertices in $S$ have a common neighbour in $G$. The size of a largest open packing in $G$ is called the open packing number, $\rho^o(G)$, of $G$. It would be interesting to note that the open packing number is a lower bound for the total domination number in graphs with no isolated vertices [Henning and Slater, 1999]. Given a graph $G$ and a positive integer $k$, the decision problem OPEN PACKING tests whether $G$ has an open packing of size at least $k$. The optimization problem MAX-OPEN PACKING takes a graph $G$ as input and finds the open packing number of $G$. It is known that OPEN PACKING is NP-complete on split graphs (i.e., $\{2K_2,C_4,C_5\}$-free graphs) [Ramos et al., 2014]. In this work, we complete the study on the complexity (P vs NPC) of OPEN PACKING on $H$-free graphs for every graph $H$ with at least three vertices by proving that OPEN PACKING is (i) NP-complete on $K_{1,3}$-free graphs and (ii) polynomial time solvable on $(P_4\cup rK_1)$-free graphs for every $r\geq 1$. In the course of proving (ii), we show that for every $t\in {2,3,4}$ and $r\geq 1$, if G is a $(P_t\cup rK_1)$-free graph, then $\rho^o(G)$ is bounded above by a linear function of $r$. Moreover, we show that OPEN PACKING parameterized by solution size is W[1]-complete on $K_{1,3}$-free graphs and MAX-OPEN PACKING is hard to approximate within a factor of $n^{(\frac{1}{2}-\delta)}$ for any $\delta>0$ on $K_{1,3}$-free graphs unless P=NP. Further, we prove that OPEN PACKING is (a) NP-complete on $K_{1,4}$-free split graphs and (b) polynomial time solvable on $K_{1,3}$-free split graphs. We prove a similar dichotomy result on split graphs with degree restrictions on the vertices in the independent set of the clique-independent set partition of the split graphs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
17+阅读 · 2021年1月21日
Anomalous Instance Detection in Deep Learning: A Survey
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员