We revisit the method of mixture technique, also known as the Laplace method, to study the concentration phenomenon in generic exponential families. Combining the properties of Bregman divergence associated with log-partition function of the family with the method of mixtures for super-martingales, we establish a generic bound controlling the Bregman divergence between the parameter of the family and a finite sample estimate of the parameter. Our bound is time-uniform and makes appear a quantity extending the classical information gain to exponential families, which we call the Bregman information gain. For the practitioner, we instantiate this novel bound to several classical families, e.g., Gaussian, Bernoulli, Exponential, Weibull, Pareto, Poisson and Chi-square yielding explicit forms of the confidence sets and the Bregman information gain. We further numerically compare the resulting confidence bounds to state-of-the-art alternatives for time-uniform concentration and show that this novel method yields competitive results. Finally, we highlight the benefit of our concentration bounds on some illustrative applications.
翻译:我们重新审视混合技术的方法,也称为Laplace方法,以研究普通指数家庭中的集中现象。结合Bregman与家庭日志分配功能相关差异的特性和超二次混合法,我们确立了一种通用约束,控制Bregman家庭参数之间的差异和参数的有限抽样估计。我们的界限是时间一致的,并显示一定数量将古典信息收益扩大到指数家庭,我们称之为Bregman信息收益。对于执业者来说,我们将这一小说包在几个古典家庭,例如Gaussian、Bernoulli、Exponitial、Weibull、Pareto、Poisson和Chi-quarre之间,产生信任组合的明确形式和Bregman信息收益。我们进一步从数字上比较由此产生的信任与时间统一浓度最新替代方法之间的界限,并表明这种新方法会产生竞争性结果。最后,我们强调我们集中圈在某些说明性应用上的好处。