In this paper, two new families of fourth-order explicit exponential Runge-Kutta methods with four stages are studied for stiff or highly oscillatory systems $y'(t)+My(t)=f(y(t))$.We analyze modified and simplified versions of fourth-order explicit exponential Runge-Kutta methods, respectively, which are different from standard exponential Runge-Kutta methods. Using the Taylor series of numerical and exact solutions, we obtain the order conditions of these new explicit exponential methods, which reduce to those of the standard Runge-Kutta methods when $M \rightarrow 0$. We show the convergence of these new exponential methods in detail. Numerical experiments are carried out, and the numerical results demonstrate the accuracy and efficiency of these new exponential methods when applied to the stiff systems or highly oscillatory problems.
翻译:在本文中,对硬或高振动系统“$y'(t)+My(t)=f(y(t))”$(y)(t)$这两个四级直线指数式龙格-库塔方法的新系列进行了研究。我们分别分析了四级直线指数式龙格-库塔方法的修改和简化版本,这些版本不同于标准的龙格-库塔方法。我们使用泰勒数字和精确解决方案系列,获得了这些新的直线指数方法的顺序条件,这些方法在$M\rightrorror 0美元时减少到标准龙格-库塔方法的顺序。我们详细展示了这些新的指数式方法的趋同。进行了数字实验,并且数字结果显示了这些新指数式方法在应用到硬系统或高度分解问题时的准确性和有效性。