In this work we propose an adaptive multilevel version of subset simulation to estimate the probability of rare events for complex physical systems. Given a sequence of nested failure domains of increasing size, the rare event probability is expressed as a product of conditional probabilities. The proposed new estimator uses different model resolutions and varying numbers of samples across the hierarchy of nested failure sets. In order to dramatically reduce the computational cost, we construct the intermediate failure sets such that only a small number of expensive high-resolution model evaluations are needed, whilst the majority of samples can be taken from inexpensive low-resolution simulations. A key idea in our new estimator is the use of a posteriori error estimators combined with a selective mesh refinement strategy to guarantee the critical subset property that may be violated when changing model resolution from one failure set to the next. The efficiency gains and the statistical properties of the estimator are investigated both theoretically via shaking transformations, as well as numerically. On a model problem from subsurface flow, the new multilevel estimator achieves gains of more than a factor 200 over standard subset simulation for a practically relevant relative error of 25%.
翻译:在这项工作中,我们提出一个适应性多层次的子集模拟版本,以估计复杂物理系统稀有事件的概率。鉴于嵌入式故障领域范围越来越小,稀有事件概率以有条件概率的产物表示。提议的新估算器使用不同的模型分辨率和不同数量的样本,在嵌入式故障组的层次上使用不同的模型分辨率和不同样本。为了大幅降低计算成本,我们建造中间故障数据集,这样只需要少量昂贵的高分辨率模型评估,而大部分样本可以取自廉价的低分辨率模拟。我们新的估计器中的一个关键想法是使用后置误差估计器,加上选择性的微细精细精细战略,以保证在将模型分辨率从一个设定到下一个设置时可能违反的关键子属性。为了通过震动变换和数字来对估计器的效率收益和统计属性进行调查。在地表下流的模型问题中,新的多层次估量器在实际相关的25 %的相对错误的标准子模拟中取得了200以上要素的收益。