Large language models readily adapt to novel settings, even without task-specific training data. Can their zero-shot capacity be extended to multimodal inputs? In this work, we propose ESPER which extends language-only zero-shot models to unseen multimodal tasks, like image and audio captioning. Our key novelty is to use reinforcement learning to align multimodal inputs to language model generations without direct supervision: for example, in the image case our reward optimization relies only on cosine similarity derived from CLIP, and thus requires no additional explicitly paired (image, caption) data. Because the parameters of the language model are left unchanged, the model maintains its capacity for zero-shot generalization. Experiments demonstrate that ESPER outperforms baselines and prior work on a variety of zero-shot tasks; these include a new benchmark we collect+release, ESP dataset, which tasks models with generating several diversely-styled captions for each image.
翻译:大型语言模型即使没有特定任务的培训数据,也能随时适应新的设置。 他们的零发能力能否扩大到多式联运投入? 在这项工作中,我们建议ESPER将只使用语言的零发模型扩大到看不见的多式联运任务,如图像和音频字幕。 我们的关键新颖之处是利用强化学习,将多式联运投入与没有直接监督的语言模型代代相匹配:例如,在图像中,我们的奖励优化仅依赖于CLIP得出的共生相似性,因此不需要额外的明确配对(图像、字幕)数据。由于语言模型的参数保持不变,该模型保持零发通用能力。 实验表明ESPER超越了各种零发任务的基准和先前的工作; 其中包括一个新的基准,我们收集+release,ESP数据集,其中的任务模型为每个图像生成几种不同格式的字幕。