Boussinesq type equations have been widely studied to model the surface water wave. In this paper, we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system, BBM-BBM system, Bona-Smith system etc. We propose local discontinuous Galerkin (LDG) methods, with carefully chosen numerical fluxes, to numerically solve this abcd Boussinesq system. The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a, b, c, d. Numerical experiments are shown to test the convergence rates, and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well.


翻译:Boussinesq 型式方程式已被广泛研究,以模拟地表水波。在本文件中,我们考虑了布辛斯克型式的腹部布辛斯克系统,由布辛斯克型方程式组成,包括许多著名模型,如古典布辛斯克系统、BBM-BBM系统、Bona-Smith系统等。我们提出了局部不连续的Galerkin(LDG)方法,并仔细选择了数字通量,以便从数字上解决这个腹部布辛斯克系统。本文的主要重点是严格确定拟议的LDG方法对一系列参数a、b、c、d.的先验误估计,以测试聚合率,并证明拟议的方法可以模拟流动波头碰撞和有限时间打击行为井然。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
51+阅读 · 2020年12月14日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2019年12月30日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员