We tackle the problem of Selective Classification where the objective is to achieve the best performance on a predetermined ratio (coverage) of the dataset. Recent state-of-the-art selective methods come with architectural changes either via introducing a separate selection head or an extra abstention logit. In this paper, we challenge the aforementioned methods and confirm that the superior performance of state-of-the-art methods is owed to training a more generalizable classifier rather than their proposed selection mechanisms. We argue that the best performing selection mechanism should instead be rooted in the classifier itself. Our proposed selection strategy uses the classification scores and achieves better results by a significant margin, consistently, across all coverages and all datasets, without any added compute cost. Furthermore, inspired by semi-supervised learning, we propose an entropy-based regularizer that improves the performance of selective classification methods. Our proposed selection mechanism with the proposed entropy-based regularizer achieves new state-of-the-art results.


翻译:我们处理选择性分类问题,其目标是在数据集的预定比例(覆盖)上取得最佳业绩。最近的最先进的选择性方法通过采用单独的选择头或额外弃权日志而带来建筑变革。在本文中,我们质疑上述方法,并确认最先进方法的优异性能应归功于培训一个更通用的分类师,而不是其提议的甄选机制。我们主张最佳的甄选机制应植根于分类者本身。我们提议的甄选战略使用分类分数,并通过一个显著的差值取得更好的结果,在所有覆盖和所有数据集之间,始终如一地,不增加任何计算成本。此外,在半监督学习的启发下,我们提出了一种基于加密法的正规化器,改进选择性分类方法的绩效。我们提议的基于基于加密法的甄选机制将获得新的最新结果。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Sequencer: Deep LSTM for Image Classification
Arxiv
0+阅读 · 2023年1月12日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员