Salient object detection in optical remote sensing image (ORSI-SOD) has gradually attracted attention thanks to the development of deep learning (DL) and salient object detection in natural scene image (NSI-SOD). However, NSI and ORSI are different in many aspects, such as large coverage, complex background, and large differences in target types and scales. Therefore, a new dedicated method is needed for ORSI-SOD. In addition, existing methods do not pay sufficient attention to the boundary of the object, and the completeness of the final saliency map still needs improvement. To address these issues, we propose a novel method called Dual Feedback Attention Framework via Boundary-Aware Auxiliary and Progressive Semantic Optimization (DFA-BASO). First, Boundary Protection Calibration (BPC) module is proposed to reduce the loss of edge position information during forward propagation and suppress noise in low-level features. Second, a Dual Feature Feedback Complementary (DFFC) module is proposed based on BPC module. It aggregates boundary-semantic dual features and provides effective feedback to coordinate features across different layers. Finally, a Strong Semantic Feedback Refinement (SSFR) module is proposed to obtain more complete saliency maps. This module further refines feature representation and eliminates feature differences through a unique feedback mechanism. Extensive experiments on two public datasets show that DFA-BASO outperforms 15 state-of-the-art methods. Furthermore, this paper strongly demonstrates the true contribution of DFA-BASO to ORSI-SOD by in-depth analysis of the visualization figure. All codes can be found at https://github.com/YUHsss/DFA-BASO.
翻译:暂无翻译