The performance of modern machine learning methods highly depends on their hyperparameter configurations. One simple way of selecting a configuration is to use default settings, often proposed along with the publication and implementation of a new algorithm. Those default values are usually chosen in an ad-hoc manner to work good enough on a wide variety of datasets. To address this problem, different automatic hyperparameter configuration algorithms have been proposed, which select an optimal configuration per dataset. This principled approach usually improves performance but adds additional algorithmic complexity and computational costs to the training procedure. As an alternative to this, we propose learning a set of complementary default values from a large database of prior empirical results. Selecting an appropriate configuration on a new dataset then requires only a simple, efficient and embarrassingly parallel search over this set. We demonstrate the effectiveness and efficiency of the approach we propose in comparison to random search and Bayesian Optimization.
翻译:现代机器学习方法的性能高度取决于它们的超参数配置。 选择配置的一个简单方法就是使用默认设置, 通常在发布和实施新算法的同时提出。 这些默认值通常以临时方式选定, 足以对各种各样的数据集产生良好效果。 为了解决这个问题, 提出了不同的自动超参数配置算法, 以选择每个数据集的最佳配置。 这种原则性方法通常能提高性能, 但却为培训程序增添额外的算法复杂性和计算成本。 作为替代, 我们提议从一个庞大的先前经验性结果数据库中学习一套互补的默认值。 在新数据集上选择一个合适的配置, 只需要对这组数据集进行简单、 高效和令人尴尬的平行搜索。 我们展示了我们在随机搜索和Bayesian Oppimization 上提议的比较方法的有效性和效率 。