The performance of modern machine learning methods highly depends on their hyperparameter configurations. One simple way of selecting a configuration is to use default settings, often proposed along with the publication and implementation of a new algorithm. Those default values are usually chosen in an ad-hoc manner to work good enough on a wide variety of datasets. To address this problem, different automatic hyperparameter configuration algorithms have been proposed, which select an optimal configuration per dataset. This principled approach usually improves performance but adds additional algorithmic complexity and computational costs to the training procedure. As an alternative to this, we propose learning a set of complementary default values from a large database of prior empirical results. Selecting an appropriate configuration on a new dataset then requires only a simple, efficient and embarrassingly parallel search over this set. We demonstrate the effectiveness and efficiency of the approach we propose in comparison to random search and Bayesian Optimization.


翻译:现代机器学习方法的性能高度取决于它们的超参数配置。 选择配置的一个简单方法就是使用默认设置, 通常在发布和实施新算法的同时提出。 这些默认值通常以临时方式选定, 足以对各种各样的数据集产生良好效果。 为了解决这个问题, 提出了不同的自动超参数配置算法, 以选择每个数据集的最佳配置。 这种原则性方法通常能提高性能, 但却为培训程序增添额外的算法复杂性和计算成本。 作为替代, 我们提议从一个庞大的先前经验性结果数据库中学习一套互补的默认值。 在新数据集上选择一个合适的配置, 只需要对这组数据集进行简单、 高效和令人尴尬的平行搜索。 我们展示了我们在随机搜索和Bayesian Oppimization 上提议的比较方法的有效性和效率 。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年6月16日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2021年6月16日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
7+阅读 · 2018年5月23日
Top
微信扫码咨询专知VIP会员