The current COVID-19 pandemic poses numerous challenges for ongoing clinical trials and provides a stress-testing environment for the existing principles and practice of estimands in clinical trials. The pandemic may increase the rate of intercurrent events (ICEs) and missing values, spurring a great deal of discussion on amending protocols and statistical analysis plans to address these issues. In this article we revisit recent research on estimands and handling of missing values, especially the ICH E9 (R1) on Estimands and Sensitivity Analysis in Clinical Trials. Based on an in-depth discussion of the strategies for handling ICEs using a causal inference framework, we suggest some improvements in applying the estimand and estimation framework in ICH E9 (R1). Specifically, we discuss a mix of strategies allowing us to handle ICEs differentially based on reasons for ICEs. We also suggest ICEs should be handled primarily by hypothetical strategies and provide examples of different hypothetical strategies for different types of ICEs as well as a road map for estimation and sensitivity analyses. We conclude that the proposed framework helps streamline translating clinical objectives into targets of statistical inference and automatically resolves many issues with defining estimands and choosing estimation procedures arising from events such as the pandemic.
翻译:目前的COVID-19大流行对进行中的临床试验构成许多挑战,为临床试验中估算值的现有原则和做法提供了一个压力测试环境;该流行病可能提高中间事件和缺失值的比率,促使就修正议定书和统计分析计划进行大量讨论,以解决这些问题;在本篇文章中,我们回顾最近关于估计值和缺失值处理的研究,特别是关于临床试验中估计值和敏感度分析的ICH E9(R1),根据对使用因果推断框架处理ICE战略的深入讨论,我们建议采用ICE E9估计值和估计框架方面的一些改进,具体地说,我们讨论各种战略的组合,使我们能够根据进行ICE的原因不同处理ICE。 我们还建议,ICE应主要通过假设战略来处理,为不同类型的ICE提供不同假设战略的实例,并提供用于估计和敏感度分析的路线图。我们的结论是,拟议的框架有助于将临床目标与估算值和估算框架的合理化,以便从统计和决心中自动地确定许多统计和估计问题。