The current COVID-19 pandemic poses numerous challenges for ongoing clinical trials and provides a stress-testing environment for the existing principles and practice of estimands in clinical trials. The pandemic may increase the rate of intercurrent events (ICEs) and missing values, spurring a great deal of discussion on amending protocols and statistical analysis plans to address these issues. In this article we revisit recent research on estimands and handling of missing values, especially the ICH E9 (R1) on Estimands and Sensitivity Analysis in Clinical Trials. Based on an in-depth discussion of the strategies for handling ICEs using a causal inference framework, we suggest some improvements in applying the estimand and estimation framework in ICH E9 (R1). Specifically, we discuss a mix of strategies allowing us to handle ICEs differentially based on reasons for ICEs. We also suggest ICEs should be handled primarily by hypothetical strategies and provide examples of different hypothetical strategies for different types of ICEs as well as a road map for estimation and sensitivity analyses. We conclude that the proposed framework helps streamline translating clinical objectives into targets of statistical inference and automatically resolves many issues with defining estimands and choosing estimation procedures arising from events such as the pandemic.


翻译:目前的COVID-19大流行对进行中的临床试验构成许多挑战,为临床试验中估算值的现有原则和做法提供了一个压力测试环境;该流行病可能提高中间事件和缺失值的比率,促使就修正议定书和统计分析计划进行大量讨论,以解决这些问题;在本篇文章中,我们回顾最近关于估计值和缺失值处理的研究,特别是关于临床试验中估计值和敏感度分析的ICH E9(R1),根据对使用因果推断框架处理ICE战略的深入讨论,我们建议采用ICE E9估计值和估计框架方面的一些改进,具体地说,我们讨论各种战略的组合,使我们能够根据进行ICE的原因不同处理ICE。 我们还建议,ICE应主要通过假设战略来处理,为不同类型的ICE提供不同假设战略的实例,并提供用于估计和敏感度分析的路线图。我们的结论是,拟议的框架有助于将临床目标与估算值和估算框架的合理化,以便从统计和决心中自动地确定许多统计和估计问题。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关论文
Arxiv
12+阅读 · 2023年2月7日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员