Mining frequent itemsets and association rules is an essential task within data mining and data analysis. In this paper, we introduce PrefRec, a recursive algorithm for finding frequent itemsets and association rules. Its main advantage is its recursiveness with respect to the items. It is particularly efficient for updating the mining process when new items are added to the database or when some are excluded. We present in a complete way the logic of the algorithm as well as its various applications. Finally we present experiments carried out in the R language comparing PrefRec with Apriori and Eclat the two most powerful algorithms in this language. To achieve this we built an R package to run our algorithm.
翻译:采矿经常项目和关联规则是数据开采和数据分析中的一项基本任务。本文介绍PrefRec,这是查找经常项目和关联规则的累进算法,其主要优点是这些项目的累进性。当新项目被添加到数据库或某些项目被排除时,它对于更新采矿过程特别有效。我们完整地介绍了算法的逻辑及其各种应用。最后,我们介绍了用R语言进行的实验,将PrefRec与Apriori和Eclat比较,这是该语言中两种最有力的算法。为了达到这个目的,我们建立了一个用于运行我们的算法的 R 软件包。