Integer quantization of neural networks can be defined as the approximation of the high precision computation of the canonical neural network formulation, using reduced integer precision. It plays a significant role in the efficient deployment and execution of machine learning (ML) systems, reducing memory consumption and leveraging typically faster computations. In this work, we present an integer-only quantization strategy for Long Short-Term Memory (LSTM) neural network topologies, which themselves are the foundation of many production ML systems. Our quantization strategy is accurate (e.g. works well with quantization post-training), efficient and fast to execute (utilizing 8 bit integer weights and mostly 8 bit activations), and is able to target a variety of hardware (by leveraging instructions sets available in common CPU architectures, as well as available neural accelerators).


翻译:神经网络的整数化可以定义为使用降低的整数精确度,高精确度计算神经网络配方的近似值,它在机器学习系统的有效部署和实施、减少记忆消耗和利用一般更快的计算方面起着重要作用。在这项工作中,我们提出了长期短期内存(LSTM)神经网络表层的全数量化战略,而长期短期内存(LSTM)神经网络表层本身也是许多生产ML系统的基础。我们的定量战略是准确的(例如,在培训后的定量化方面运作良好),高效和快速地执行(利用8位整数重量和大部分8位激活),并且能够针对各种硬件(通过利用共同的CPU结构中现有的指示套以及现有的神经加速器)。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
专知会员服务
109+阅读 · 2020年3月12日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
37+阅读 · 2021年2月10日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
6+阅读 · 2018年10月3日
LARNN: Linear Attention Recurrent Neural Network
Arxiv
5+阅读 · 2018年8月16日
VIP会员
相关资讯
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员