Calibrated uncertainty estimates in machine learning are crucial to many fields such as autonomous vehicles, medicine, and weather and climate forecasting. While there is extensive literature on uncertainty calibration for classification, the classification findings do not always translate to regression. As a result, modern models for predicting uncertainty in regression settings typically produce uncalibrated and overconfident estimates. To address these gaps, we present a calibration method for regression settings that does not assume a particular uncertainty distribution over the error: Calibrating Regression Uncertainty Distributions Empirically (CRUDE). CRUDE makes the weaker assumption that error distributions have a constant arbitrary shape across the output space, shifted by predicted mean and scaled by predicted standard deviation. We detail a theoretical connection between CRUDE and conformal inference. Across an extensive set of regression tasks, CRUDE demonstrates consistently sharper, better calibrated, and more accurate uncertainty estimates than state-of-the-art techniques.
翻译:机器学习中经校准的不确定性估计对于自主车辆、医学、天气和气候预报等许多领域至关重要。虽然有大量关于用于分类的不确定性校准的文献,但分类结果并不总是转化为倒退。因此,在回归环境中预测不确定性的现代模型通常产生未经校准和过于自信的估计数。为弥补这些差距,我们为回归设置提供了一个校准方法,该方法并不假定在错误上存在特定的不确定性分布 : 校准回归不确定性分布(CRUDE ) 。 CRUDE 给出了一个较弱的假设,即错误分布在产出空间之间具有持续的任意形状,以预测平均值转换,以预测标准偏差为尺度。我们详细介绍了CRUDE 和符合性推断之间的理论联系。在一系列广泛的回归任务中,CRUDE 展示了比最新技术更加清晰、更精确和准确的不确定性估计。