We study the existence of finite characterisations for modal formulas. A finite characterisation of a modal formula $\varphi$ is a finite collection of positive and negative examples that distinguishes $\varphi$ from every other, non-equivalent modal formula, where an example is a finite pointed Kripke structure. This definition can be restricted to specific frame classes and to fragments of the modal language: a modal fragment $L$ admits finite characterisations with respect to a frame class $F$ if every formula $\varphi\in L$ has a finite characterisation with respect to $L$ consting of examples that are based on frames in $F$. Finite characterisations are useful for illustration, interactive specification, and debugging of formal specifications, and their existence is a precondition for exact learnability with membership queries. We show that the full modal language admits finite characterisations with respect to a frame class $F$ only when the modal logic of $F$ is locally tabular. We then study which modal fragments, freely generated by some set of connectives, admit finite characterisations. Our main result is that the positive modal language without the truth-constants $\top$ and $\bot$ admits finite characterisations w.r.t. the class of all frames. This result is essentially optimal: finite characterizability fails when the language is extended with the truth constant $\top$ or $\bot$ or with all but very limited forms of negation.
翻译:我们研究了具有限特征的模态公式的存在性。 模态公式$\varphi$ 的有限特征是一个有限集合,其中包含了区分 $\varphi$ 与任何其他非等价模态公式的正例和反例,其中例子是一个有限的 Kripke 结构。该定义可以限制在特定的框类和模态语言的片段上:模态语言片段 $L$ 可以与框类 $F$ 相关连,该相关连是指 $L$ 中每一个公式 $\varphi$ 都有一个与 $F$ 中的框架有关的有限特征组成(并且这组特征基于框架类别 $F$)。有限特征对于形式化规格说明的伊示、交互式规范和调试非常有用,并且其存在是成员查询的确切可学性的先决条件。我们表明,仅当 $F$ 的模态逻辑是局部表格时,完整的模态语言包含相对于框架类 $F$ 的有限特征。然后,我们研究了由某个逻辑连接符集生成的模态片段,是否可以具有有限特征。我们的主要结果是,去除真常数 $\top$ 和 $\bot$ 后的正模态语言可以相对于所有框架有限特征。这个结果本质上是最优的:当扩展语言以带有真值常数 $\top$ 或 $\bot$ 或仅用极限否定形式时,有限特征将失败。