Deep learning recommendation systems serve personalized content under diverse tail-latency targets and input-query loads. In order to do so, state-of-the-art recommendation models rely on terabyte-scale embedding tables to learn user preferences over large bodies of contents. The reliance on a fixed embedding representation of embedding tables not only imposes significant memory capacity and bandwidth requirements but also limits the scope of compatible system solutions. This paper challenges the assumption of fixed embedding representations by showing how synergies between embedding representations and hardware platforms can lead to improvements in both algorithmic- and system performance. Based on our characterization of various embedding representations, we propose a hybrid embedding representation that achieves higher quality embeddings at the cost of increased memory and compute requirements. To address the system performance challenges of the hybrid representation, we propose MP-Rec -- a co-design technique that exploits heterogeneity and dynamic selection of embedding representations and underlying hardware platforms. On real system hardware, we demonstrate how matching custom accelerators, i.e., GPUs, TPUs, and IPUs, with compatible embedding representations can lead to 16.65x performance speedup. Additionally, in query-serving scenarios, MP-Rec achieves 2.49x and 3.76x higher correct prediction throughput and 0.19% and 0.22% better model quality on a CPU-GPU system for the Kaggle and Terabyte datasets, respectively.


翻译:为了做到这一点,我们根据对各种嵌入式的描述,提议一种混合嵌入式代表制,以更高质量的嵌入方式,以增加记忆和计算要求为代价。为了应对混合代表制的系统性能挑战,我们提议MP-Rec -- -- 一种共同设计技术,利用嵌入式代表制和基本硬件平台的异质性和动态选择。在实际系统模型硬件方面,我们展示了如何将定制化的加速器(即:GPUs、TPPS和ICUs)与16.65级标准加速器(即:GPUs、TPUs和NUBs)相匹配。

0
下载
关闭预览

相关内容

【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员