项目名称: Ag对形变Cu-Fe原位复合材料组织与性能的作用机制

项目编号: No.50801046

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 交通运输

项目作者: 高海燕

作者单位: 上海交通大学

项目金额: 18万元

中文摘要: 高强高导铜基材料是电子、信息、交通、能源等产业的重要基础之一。形变铜基原位复合材料具有超高的强度和良好的电导率,是超高强高导铜基材料的重要发展方向。对于形变Cu-Fe原位复合材料,由于固溶Fe原子对Cu基体电导率的严重危害,材料电导率通常不足40%IACS。本项目以Cu-Fe原位复合材料制备的科学原理为研究对象,依据多元多尺度强化与导电理论,提出了"抑制固溶、促进析出"的研究思路,通过添加少量的合金元素Ag和微量的元素P,并通过合适的热处理及加工技术,研究了Cu-Fe-Ag和Cu-Fe-Ag-P的组织演变规律以及合金元素Fe在Cu中高温固溶度、对复合材料强度和电导率的影响规律。通过第一原理计算、三维原子探针、同步辐射小角散射等实验研究手段,初步探索了合金元素的作用机制,为高强高导铜基材料的研究提供了理论指导。

中文关键词: Cu-Fe;原位复合材料;强度;电导率

英文摘要: High strength and high conductivity Cu base material is one of the foundations in electronic, information, transportation and energy fields. Because of extremely high strength plus good conductivity, deformation processed Cu base in situ composite has become an important research subject.However, due to the particularly harmful effect on the conductivity of iron atoms in solid solution, the conductivity of Cu-Fe in situ composites is always less than 40%IACS. In the project,principles of Cu-Fe in situ composites preparation was investigated according to the idea "inhibiting the solution of Fe at high temperature and accelerating the precipitation kinetic of Fe at the low temperature". Interactions between Cu, Fe, Ag and small ammount of P was investigated. The effect of alloying elments on the microstructure, mechanical and electrical properties was studied by first principle calculation, three dimension atom probe analysis and synchrotron radiation small angle X-ray scatter.The results lay foundation for the research and development of high strength and high conductivity Cu base materials.

英文关键词: Cu-Fe;in situ composites; strength; conductivity

成为VIP会员查看完整内容
0

相关内容

【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
26+阅读 · 2021年8月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
182+阅读 · 2020年11月23日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
26+阅读 · 2021年8月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
182+阅读 · 2020年11月23日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员