Mathematical modeling of fluid flow in a porous medium is usually described by a continuity equation and a chosen constitutive law. The latter, depending on the problem at hand, may be a nonlinear relation between the fluid's pressure gradient and velocity. The actual shape of this relation is normally chosen at the outset of the problem, even though, in practice, the fluid may experience velocities outside of its range of applicability. We propose here an adaptive model, so that the most appropriate law is locally selected depending on the computed velocity. From the analytical point of view, we show well-posedness of the problem when the law is monotone in velocity and show existence in one space dimension otherwise. From the computational point of view, we present a new approach based on regularizing via mollification the underlying dissipation, i.e., the power lost by the fluid to the porous medium through drag. The resulting regularization is shown to converge to the original problem using $\Gamma$-convergence on the dissipation in the monotone case. This approach gives rise to a variational numerical scheme which applies to very general problems and which we validate on three test cases.
翻译:在多孔介质中流体流体的数学模型通常用连续性方程式和选定的成份法来描述。 后者取决于手头的问题, 可能是流体压力梯度和速度之间的非线性关系。 这种关系的实际形状通常在问题一开始就选择, 尽管在实际中, 流体可能会经历其适用范围以外的速度。 我们在此提议一个适应性模型, 以便根据计算速度, 当地选择最适当的法律。 从分析角度看, 当法律在速度上是单体时, 我们显示出问题的正确性, 并且显示存在一个空间维度。 从计算角度看, 我们提出了一个新的方法, 其基础是, 通过软化基本消散状态, 也就是说, 流体在拖动中失去的能量。 由此产生的规范化显示, 使用 $\Gamma$- converggg 来将问题与原始问题相融合。 在单质案的消散状态上, 我们的这个方法产生了一种变式数字方案, 适用于我们的三个测试案例。