In this note, we show how to obtain a "characteristic power series" of graphons -- infinite limits of dense graphs -- as the limit of normalized reciprocal characteristic polynomials. This leads to a new characterization of graph quasi-randomness and another perspective on spectral theory for graphons, a complete description of the function in terms of the spectrum of the graphon as a self-adjoint kernel operator. Interestingly, while we apply a standard regularization to classical determinants, it is unclear how necessary this is.
翻译:在本说明中,我们展示了如何获得一个“特性能量序列”的图形,即无限的密度图形,作为正统对等特性多面体的极限。这导致对图形准随机性进行新的定性,以及对图形的光谱理论的另一种观点,完整地描述图形作为自对接内核操作器的频谱的功能。有趣的是,虽然我们对传统决定因素采用标准规范,但不清楚这是否必要。