Density functional theory and its optimization algorithm are the main methods to calculate the properties in the field of materials. Although the calculation results are accurate, it costs a lot of time and money. In order to alleviate this problem, we intend to use machine learning to predict material properties. In this paper, we conduct experiments on atomic volume, atomic energy and atomic formation energy of metal alloys, using the open quantum material database. Through the traditional machine learning models, deep learning network and automated machine learning, we verify the feasibility of machine learning in material property prediction. The experimental results show that the machine learning can predict the material properties accurately.
翻译:密度功能理论及其优化算法是计算材料领域属性的主要方法。 尽管计算结果准确,但它花费了大量的时间和金钱。 为了缓解这一问题,我们打算使用机器学习来预测材料属性。 在本文件中,我们利用开放量子材料数据库,对金属合金原子体积、原子能和原子形成能量进行实验。我们通过传统的机器学习模型、深层学习网络和自动机学,核查机器在材料属性预测中学习的可行性。实验结果显示机器学习能够准确预测材料属性。