Deep learning has been successful in automating the design of features in machine learning pipelines. However, the algorithms optimizing neural network parameters remain largely hand-designed and computationally inefficient. We study if we can use deep learning to directly predict these parameters by exploiting the past knowledge of training other networks. We introduce a large-scale dataset of diverse computational graphs of neural architectures - DeepNets-1M - and use it to explore parameter prediction on CIFAR-10 and ImageNet. By leveraging advances in graph neural networks, we propose a hypernetwork that can predict performant parameters in a single forward pass taking a fraction of a second, even on a CPU. The proposed model achieves surprisingly good performance on unseen and diverse networks. For example, it is able to predict all 24 million parameters of a ResNet-50 achieving a 60% accuracy on CIFAR-10. On ImageNet, top-5 accuracy of some of our networks approaches 50%. Our task along with the model and results can potentially lead to a new, more computationally efficient paradigm of training networks. Our model also learns a strong representation of neural architectures enabling their analysis.
翻译:深层学习成功地实现了机器学习管道特征设计的自动化。 但是,优化神经网络参数的算法在很大程度上仍然是手工设计的,而且计算效率低。 我们研究的是,如果我们能够利用过去对其他网络的培训知识,利用深层学习来直接预测这些参数。 我们引入了神经结构不同计算图的大规模数据集 - DeepNets-1M - 并用它来探索CIFAR-10 和图像网络的参数预测。 通过利用图形神经网络的进步,我们提议了一个超网络,可以预测单个前方通道的性能参数,仅次于1分之一秒,甚至在CPU上。 拟议的模型在不可见和多样化的网络上取得了令人惊讶的良好业绩。 例如,它能够预测ResNet-50的所有2400万个参数,在CIFAR-10上达到60%的精确度。 在图像网络上,我们一些网络的5强精度为50%。 我们的任务与模型和结果有可能导致一个新的、更计算高效的培训网络模式。 我们的模型还学习了强大的神经结构结构的代表性,以便进行分析。