Human Activity Recognition (HAR) is an ongoing research topic. It has applications in medical support, sports, fitness, social networking, human-computer interfaces, senior care, entertainment, surveillance, and the list goes on. Traditionally, computer vision methods were employed for HAR, which has numerous problems such as secrecy or privacy, the influence of environmental factors, less mobility, higher running costs, occlusion, and so on. A new trend in the use of sensors, especially inertial sensors, has lately emerged. There are several advantages of employing sensor data as an alternative to traditional computer vision algorithms. Many of the limitations of computer vision algorithms have been documented in the literature, including research on Deep Neural Network (DNN) and Machine Learning (ML) approaches for activity categorization utilizing sensor data. We examined and analyzed different Machine Learning and Deep Learning approaches for Human Activity Recognition using inertial sensor data of smartphones. In order to identify which approach is best suited for this application.


翻译:人类活动认识(HAR)是一个持续的研究课题,在医疗支助、体育、健身、社交网络、人-计算机界面、老年人护理、娱乐、监视和清单方面都有应用。传统上,HAR采用计算机视觉方法,它有许多问题,例如保密或隐私、环境因素的影响、流动性低、运行成本高、隔离等等。最近出现了使用传感器,特别是惯性传感器的新趋势。使用传感器数据替代传统的计算机视觉算法有若干好处。在文献中记载了计算机视觉算法的许多局限性,包括对利用感官数据进行活动分类的深神经网络和机器学习方法的研究。我们用智能手机的惯性传感器数据研究和分析了不同的机器学习和深学习方法,以确认人类的活动。为了确定哪种方法最适合这一应用。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
117+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
11+阅读 · 2021年3月25日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员