In classification problems, supervised machine-learning methods outperform traditional algorithms, thanks to the ability of neural networks to learn complex patterns. However, in two-class classification tasks like anomaly or fraud detection, unsupervised methods could do even better, because their prediction is not limited to previously learned types of anomalies. An intuitive approach of anomaly detection can be based on the distances from the centers of mass of the two respective classes. Autoencoders, although trained without supervision, can also detect anomalies: considering the center of mass of the normal points, reconstructions have now radii, with largest radii most likely indicating anomalous points. Of course, radii-based classification were already possible without interposing an autoencoder. In any space, radial classification can be operated, to some extent. In order to outperform it, we proceed to radial deformations of data (i.e. centric compression or expansions of axes) and autoencoder training. Any autoencoder that makes use of a data center is here baptized a centric autoencoder (cAE). A special type is the cAE trained with a uniformly compressed dataset, named the centripetal autoencoder (cpAE). The new concept is studied here in relation with a schematic artificial dataset, and the derived methods show consistent score improvements. But tested on real banking data, our radial deformation supervised algorithms alone still perform better that cAEs, as expected from most supervised methods; nonetheless, in hybrid approaches, cAEs can be combined with a radial deformation of space, improving its classification score. We expect that centric autoencoders will become irreplaceable objects in anomaly live detection based on geometry, thanks to their ability to stem naturally on geometrical algorithms and to their native capability of detecting unknown anomaly types.


翻译:在分类问题中,由于神经网络有能力学习复杂的模式,监督的机器学习方法比传统算法更符合传统算法。然而,在异常或欺诈检测等两大类分类任务中,未经监督的方法可以做得更好,因为其预测并不局限于先前所学的异常类型。异常检测的直觉方法可以基于与两个类质量中心的距离。尽管在没有监督的情况下受过培训,但Autoencoders也可以检测异常现象:考虑到正常点的质量中心,重建现在已经存在了radi,最大的辐射最有可能显示异常点。当然,基于radi的分类方法已经有可能做到,而无需插入一个自动coder。在任何空间中,可以操作辐射分类方法。为了超越它,我们着手进行数据异常变形变异(即中心压缩或扩展轴轴)和自动电解变法训练。任何使用数据中心的自动变异变变法都能够在这里进行自我洗,而内部变异的变异的变法则可以显示其不断变异的数据变异的变异性(A型) 和不断变的变异的数据变变的亚的亚的变变变的变变变的变法, 。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
21+阅读 · 2020年10月11日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员