Physical systems are usually modeled by differential equations, but solving these differential equations analytically is often intractable. Instead, the differential equations can be solved numerically by discretization in a finite computational domain. The discretized equation is reduced to a large linear system, whose solution is typically found using an iterative solver. We start with an initial guess, x_0, and iterate the algorithm to obtain a sequence of solution vectors, x_m. The iterative algorithm is said to converge to solution $x$ if and only if x_m converges to $x$. Accuracy of the numerical solutions is important, especially in the design of safety critical systems such as airplanes, cars, or nuclear power plants. It is therefore important to formally guarantee that the iterative solvers converge to the "true" solution of the original differential equation. In this paper, we first formalize the necessary and sufficient conditions for iterative convergence in the Coq proof assistant. We then extend this result to two classical iterative methods: Gauss-Seidel iteration and Jacobi iteration. We formalize conditions for the convergence of the Gauss--Seidel classical iterative method, based on positive definiteness of the iterative matrix. We then formally state conditions for convergence of Jacobi iteration and instantiate it with an example to demonstrate convergence of iterative solutions to the direct solution of the linear system. We leverage recent developments of the Coq linear algebra and mathcomp library for our formalization.


翻译:物理系统通常以差异方程式建模, 但分析解决这些差异方程式往往难以解决。 相反, 差异方程式可以通过在有限计算域内离散的分解解决。 离散方程式被降为大型线性系统, 其解决方案通常使用迭代求解器。 我们从最初的猜测开始, x_ 0 开始, 并循环算法, 以获得一个解析矢量序列, x_ m 。 迭代算法据说只有在 x_ m 接近 $x 美元的情况下才会趋同于 $x 。 数字方程式的精确度很重要, 特别是在设计飞机、 汽车或核电厂等安全关键系统时。 因此, 重要的是要正式保证迭代解方程式与最初差异方程式的“ 真实” 解决方案汇合。 在本文中, 我们首先将这一结果推广到两种经典的迭代法方法: 高斯- Seidel Iteration 和 Jacoberation 。 我们正式将最近Glas-S- Sebreal comlial comlial comlicomlistal develilate develildal develilation commission rolation develilatemental degal develilatemental demotion rolational degility degilizmmlations co, cobal degiliztal degiliztal degal degal degil co, co, sution routal devial devi co, sution sution subil subil subil ro, subil subil subil subal subal subal subal subal subal subal ro subal subal subal subal subal ro, ro, subal ro, subal subal ro, ro ro ro ro ro ro, ro subal ro, subal ro, su, 我们首先我们先正式化了, 我们, 我们先将结果的结果扩展

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年4月18日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员