In $d$ dimensions, approximating an arbitrary function oscillating with frequency $\lesssim k$ requires $\sim k^d$ degrees of freedom. A numerical method for solving the Helmholtz equation (with wavenumber $k$) suffers from the pollution effect if, as $k\to \infty$, the total number of degrees of freedom needed to maintain accuracy grows faster than this natural threshold. While the $h$-version of the finite element method (FEM) (where accuracy is increased by decreasing the meshwidth $h$ and keeping the polynomial degree $p$ fixed) suffers from the pollution effect, the celebrated papers [Melenk, Sauter 2010], [Melenk, Sauter 2011], [Esterhazy, Melenk 2012], and [Melenk, Parsania, Sauter 2013] showed that the $hp$-FEM (where accuracy is increased by decreasing the meshwidth $h$ and increasing the polynomial degree $p$) applied to a variety of constant-coefficient Helmholtz problems does not suffer from the pollution effect. The heart of the proofs of these results is a PDE result splitting the solution of the Helmholtz equation into "high" and "low" frequency components. In this expository paper we prove this splitting for the constant-coefficient Helmholtz equation in full space (i.e., in $\mathbb{R}^d$) using only integration by parts and elementary properties of the Fourier transform; this is in contrast to the proof for this set-up in [Melenk, Sauter 2010] which uses somewhat-involved bounds on Bessel and Hankel functions. The proof in this paper is motivated by the recent proof in [Lafontaine, Spence, Wunsch 2022] of this splitting for the variable-coefficient Helmholtz equation in full space; indeed, the proof in [Lafontaine, Spence, Wunsch 2022] uses more-sophisticated tools that reduce to the elementary ones above for constant coefficients.
翻译:简单证明$hp$有限元法在全空间常系数Helmholtz方程中不会出现污染效应
翻译后的摘要:
本文中,我们证明了全空间(即$\mathbb{R}^d$中)常系数Helmholtz方程的解可以通过积分部分和傅里叶变换的基本属性分解为“高”和“低”频率分量。 这种证明方法仅需使用基本的积分部分与傅里叶变换, 而不需要使用 Bessel 和 Hankel 函数的某些相对复杂的界限, 然而该证明的核心依旧是采用了 [Melenk,Sauter 2010],[Melenk,Sauter 2011 ],[Esterhazy,Melenk 2012] 和 [Melenk,Parsania,Sauter 2013] 等著名论文中的方法,其中这些论文利用了$hp$有限元法对各种常系数Helmholtz问题的解不会出现污染效应的性质来证明该方程解的分解。 该文的证明来源于[Lafontaine,Spence,Wunsch 2022] 证明的常变系数Helmholtz方程在全空间的解分解; 事实上,[Lafontaine,Spence,Wunsch 2022]中使用的更复杂的工具可以归约为本文中用于常系数的基本工具。