In this paper, we study the treasure hunt problem in a graph by a mobile agent. The nodes in the graph $G=(V,E)$ are anonymous and the edges incident to a vertex $v\in V$ whose degree is $deg(v)$ are labeled arbitrarily as $0,1,\ldots, deg(v)-1$. At a node $t$ in $G$ a stationary object, called {\it treasure} is located. The mobile agent that is initially located at a node $s$ in $G$, the starting point of the agent, must find the treasure by reaching the node $t$. The distance from $s$ to $t$ is $D$. The {\it time} required to find the treasure is the total number of edges the agent visits before it finds the treasure. The agent does not have any prior knowledge about the graph or the position of the treasure. An oracle, that knows the graph, the initial position of the agent, and the position of the treasure, places some pebbles on the nodes, at most one per node, of the graph to guide the agent towards the treasure. This paper aims to study the trade-off between the number of pebbles provided and the time required to find the treasure. To be specific, we aim to answer the following question. ``What is the minimum time for treasure hunt in a graph with maximum degree $\Delta$ and diameter $D$ if $k$ pebbles are placed? " We answer the above question when $k<D$ or $k=cD$ for some positive integer $c$. We design efficient algorithms for the agent for different values of $k$. We also propose an almost matching lower bound result for $k<D$.
翻译:在本文中, 我们在一个移动代理商的图表中研究寻宝问题。 图形$G=( V, E) 中的节点是匿名的, 图形中的节点必须是匿名的, 边点事件是位于美元( V) 的顶点是美元( V) 美元( V) 美元) 。 本文中, 我们用移动代理商用移动代理商的图表来研究寻宝问题。 移动代理商最初位于一个节点, 美元为$( G) 的节点, 代理商的起始点是匿名的节点。 到达节点后, 美元( V) 的边点是美元( V) 美元( V) 。 找到宝所需的时间是代理商在找到宝之前访问的边缘的总数 。 代理商对图表或宝藏的位置没有任何事先了解。 我们知道图表、 代理商的初始位置和宝藏的位置, 将某些节点的比分值( 美元) 答案放在一个节点上, 。 我们的轨道上, 美元( ) 交易的底值是一定的答案, 。 我们的值是纸交易的答案是具体值 。