This paper aims to reduce randomness in football by analysing the role of lineups in final scores using machine learning prediction models we have developed. Football clubs invest millions of dollars on lineups and knowing how individual statistics translate to better outcomes can optimise investments. Moreover, sports betting is growing exponentially and being able to predict the future is profitable and desirable. We use machine learning models and historical player data from English Premier League (2020-2022) to predict scores and to understand how individual performance can improve the outcome of a match. We compared different prediction techniques to maximise the possibility of finding useful models. We created heuristic and machine learning models predicting football scores to compare different techniques. We used different sets of features and shown goalkeepers stats are more important than attackers stats to predict goals scored. We applied a broad evaluation process to assess the efficacy of the models in real world applications. We managed to predict correctly all relegated teams after forecast 100 consecutive matches. We show that Support Vector Regression outperformed other techniques predicting final scores and that lineups do improve predictions. Finally, our model was profitable (42% return) when emulating a betting system using real world odds data.


翻译:本文旨在通过使用我们开发的机器学习预测模型分析球队在决赛中的角色来减少足球的随机性。 足球俱乐部在队列上投资数百万美元,并了解个人统计数据如何转化为更好的结果,可以优化投资。 此外,体育赌注正在成倍增长,而且能够预测未来是有利和可取的。 我们使用英国总理联盟(2020-2022年)的机器学习模型和历史玩家数据来预测分数,并了解个人业绩如何改善比赛结果。 我们比较了不同的预测技术,以尽量扩大寻找有用模型的可能性。 我们创建了预测足球得分的超常和机学习模型,以比较不同的技术。 我们使用不同的功能和显示的目标管理员统计比攻击者预测得分要重要得多。 我们应用了广泛的评估程序来评估模型在真实世界应用中的功效。 我们设法在预测连续100次匹配后正确预测了所有被降级的球队。 我们显示,支持Vectr Regrestiion 超越了预测最后得分的其他技术,而排队也改进了预测。 最后,我们的模型在模拟世界数据模拟时是有利可图利的(42%的回报)。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
35+阅读 · 2021年8月2日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员