Unsupervised domain adaptation(UDA) has been applied to image semantic segmentation to solve the problem of domain offset. However, in some difficult categories with poor recognition accuracy, the segmentation effects are still not ideal. To this end, in this paper, Intra-subdomain adaptation adversarial learning segmentation method based on Dynamic Pseudo Labels(IDPL) is proposed. The whole process consists of 3 steps: Firstly, the instance-level pseudo label dynamic generation module is proposed, which fuses the class matching information in global classes and local instances, thus adaptively generating the optimal threshold for each class, obtaining high-quality pseudo labels. Secondly, the subdomain classifier module based on instance confidence is constructed, which can dynamically divide the target domain into easy and difficult subdomains according to the relative proportion of easy and difficult instances. Finally, the subdomain adversarial learning module based on self-attention is proposed. It uses multi-head self-attention to confront the easy and difficult subdomains at the class level with the help of generated high-quality pseudo labels, so as to focus on mining the features of difficult categories in the high-entropy region of target domain images, which promotes class-level conditional distribution alignment between the subdomains, improving the segmentation performance of difficult categories. For the difficult categories, the experimental results show that the performance of IDPL is significantly improved compared with other latest mainstream methods.


翻译:未经监督的域适应(UDA) 已被应用到图像语义分割法中,以解决域被抵消的问题。 但是,在某些难以识别的类别中,分解效果仍然不理想。 为此,本文件提议了基于动态 Pseudo Labels (IDPL) 的子多域适应对抗性学习分解法。 整个过程包括3个步骤: 首先, 提议了试级假标签动态生成模块, 将全球级和地方级的类匹配信息连接起来, 从而适应性地为每类生成最佳阈值, 获得高质量的假标签。 其次, 以实例信任为基础的子多域分类模块已经构建, 能够动态地将目标域区分为简单和困难的亚域。 最后, 提议了基于自我保护的子多域对抗性辨识性学习模块。 它使用多头自闭式软件, 以有助于生成高质量的假标签, 获得高质量的假标签。 第二, 以实例信任为基础的子域分类模块模块模块模块模块模块模块模块模块模块模块模块模块, 将显著地将目标域内最困难的绩效分类进行升级,, 显示最困难的分类的分类 。

0
下载
关闭预览

相关内容

对抗学习是一种机器学习技术,旨在通过提供欺骗性输入来欺骗模型。最常见的原因是导致机器学习模型出现故障。大多数机器学习技术旨在处理特定的问题集,其中从相同的统计分布(IID)生成训练和测试数据。当这些模型应用于现实世界时,对手可能会提供违反该统计假设的数据。可以安排此数据来利用特定漏洞并破坏结果。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月2日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员