This paper tackles automated categorization of Age-related Macular Degeneration (AMD), a common macular disease among people over 50. Previous research efforts mainly focus on AMD categorization with a single-modal input, let it be a color fundus image or an OCT image. By contrast, we consider AMD categorization given a multi-modal input, a direction that is clinically meaningful yet mostly unexplored. Contrary to the prior art that takes a traditional approach of feature extraction plus classifier training that cannot be jointly optimized, we opt for end-to-end multi-modal Convolutional Neural Networks (MM-CNN). Our MM-CNN is instantiated by a two-stream CNN, with spatially-invariant fusion to combine information from the fundus and OCT streams. In order to visually interpret the contribution of the individual modalities to the final prediction, we extend the class activation mapping (CAM) technique to the multi-modal scenario. For effective training of MM-CNN, we develop two data augmentation methods. One is GAN-based fundus / OCT image synthesis, with our novel use of CAMs as conditional input of a high-resolution image-to-image translation GAN. The other method is Loose Pairing, which pairs a fundus image and an OCT image on the basis of their classes instead of eye identities. Experiments on a clinical dataset consisting of 1,099 color fundus images and 1,290 OCT images acquired from 1,099 distinct eyes verify the effectiveness of the proposed solution for multi-modal AMD categorization.


翻译:本文处理与年龄有关的巨型变形(AMD)的自动化分类,这是50岁以上人群中常见的多式多式神经网络(MM-CNN)的一个常见肿瘤疾病,以往的研究工作主要侧重于AMD分类,采用单一模式输入,让它成为彩色基金图像或OCT图像。相比之下,我们认为AMD分类是一种多模式输入,这是一个具有临床意义但大多尚未探索的方向。与以前采用传统特征提取方法和无法共同优化的分类培训的艺术相反,我们选择了最终到终端多式多式神经网络(MM-CNN)的多式神经网络(MM-CNN)。我们的MM-CNN图像主要侧重于AMD分类(AM-MD)的单一模式分类。我们的MMM-MD(MD)图像(MM-MD-Mulational-Cal Concial Nweal 网络(MMM-CN) 。我们开发了两种数据增强方法。一个是GAN-Final-us OCT(OCT)-OCT) 图像(OCT)的双向 OC-lialimalimalimal imal imal imal imal imal imal imal imal imal imal imal imal imal imal imal) imal imal imal imal imalizal,这是我们使用一种新版的硬化的硬化的硬基的硬基的硬基的硬化的硬化的硬化的模型化的模型,用来将硬化的硬化的硬化的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基数据化图,这是一种新基的硬基的硬基的硬基的硬基的硬基的硬基的硬基的硬基。

0
下载
关闭预览

相关内容

超威半导体公司(英语:Advanced Micro Devices, Inc.,简称AMD)是一家专注于微处理器与图形处理器设计和生产的跨国公司,总部位于美国加州旧金山湾区硅谷内的Sunnyvale。
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员