In recent years, deep neural networks have achieved high ac-curacy in the field of image recognition. By inspired from human learning method, we propose a semantic segmentation method using cooperative learning which shares the information resembling a group learning. We use two same networks and paths for sending feature maps between two networks. Two networks are trained simultaneously. By sharing feature maps, one of two networks can obtain the information that cannot be obtained by a single network. In addition, in order to enhance the degree of cooperation, we propose two kinds of methods that connect only the same layer and multiple layers. We evaluated our proposed idea on two kinds of networks. One is Dual Attention Network (DANet) and the other one is DeepLabv3+. The proposed method achieved better segmentation accuracy than the conventional single network and ensemble of networks.


翻译:近年来,深神经网络在图像识别领域实现了高度的准确性。根据人类学习方法的启发,我们提出使用合作学习的语义分解方法,分享类似于集体学习的信息。我们使用两个相同的网络和路径在两个网络之间发送地貌地图。两个网络同时接受培训。通过共享地物地图,两个网络中的一个可以获取单个网络无法获得的信息。此外,为了提高合作程度,我们提出了两种仅连接同一层和多个层次的方法。我们评估了我们提议的两种网络概念。一个是双重关注网络(Danet),另一个是DeepLabv3+。拟议方法比常规单一网络和网络组合更加精确。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Deep Co-Training for Semi-Supervised Image Segmentation
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关资讯
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员