The connections between renormalization in statistical mechanics and information theory are intuitively evident, but a satisfactory theoretical treatment remains elusive. Recently, Koch-Janusz and Ringel proposed selecting a real-space renormalization map for classical lattice systems by minimizing the loss of long-range mutual information [Nat. Phys. 14, 578 (2018)]. The success of this technique has been related in part to the minimization of long-range couplings in the renormalized Hamiltonian [Lenggenhager et al., Phys. Rev. X 10, 011037 (2020)]. We show that to minimize these couplings the renormalization map should, somewhat counterintuitively, instead be chosen to minimize the loss of short-range mutual information between a block and its boundary. Moreover, the previous minimization is a relaxation of this approach, which indicates that the aims of preserving long-range physics and eliminating short-range couplings are related in a nontrivial way.
翻译:统计力学与信息理论的重新整顿之间的联系直观可见,但令人满意的理论处理仍然遥不可及。最近,Koch-Janusz和Ringel提议为古典花旗系选择一个真实的空间重新整顿地图,最大限度地减少长程相互信息的损失[Nat.Phys.14, 578(2018)]。这一方法的成功部分与尽量减少重新整顿的汉密尔顿[Lenggenhager等人,Phys.Rev. X 10, 011037(202020 )]的长程联动有关。我们表明,为了尽可能减少这些重新整顿地图的混合,应当在某种程度上反直觉地选择,而不是尽可能减少区块与其边界之间短程相互信息的损失。此外,以前的尽量减少是这一方法的放松,这表明保护长程物理学和消除短程联动的目的与非边际方式有关。